Se trata del planeta que ofrece un mayor brillo a lo largo del año dependiendo de su fase. Es, además, después del Sol el mayor cuerpo celeste del Sistema Solar, con una masa casi dos veces y media la de los demás planetas juntos (318 veces más pesado que la Tierra y 3 veces más que Saturno).
El planeta es conocido por una enorme formación meteorológica, la Gran Mancha Roja, fácilmente vislumbrable por astrónomos aficionados dado su gran tamaño, superior al de la Tierra. Su atmósfera está permanentemente cubierta de nubes que permiten trazar la dinámica atmosférica y muestran un alto grado de turbulencia.
Tomando como referencia la distancia al Sol Júpiter es el quinto planeta del Sistema Solar. Su órbita se sitúa aproximadamente a 5 UA, unos 750 millones de km del Sol.
Bandas y Zonas.
El aficionado inglés A. S. Williams hizo el primer estudio sistemático sobre la atmósfera de Júpiter en 1896. La atmósfera de Júpiter está dividida en cinturones oscuros llamados Bandas y regiones claras llamadas Zonas, todos ellos en la dirección de los paralelos. Las bandas y zonas delimitan un sistema de corrientes de viento alternantes en dirección con la latitud y en general de gran intensidad; por ejemplo, los vientos en el ecuador soplan a velocidades en torno a 100 m/s (360 km/h). En la Banda Ecuatorial Norte, los vientos pueden llegar a soplar a 140 m/s (500 km/h). También Júpiter es el planeta con mayor fuerza de rotación ya que tiende a rotar con una fuerza de 2.000.000 de toneladas.
La Gran Mancha Roja.
El científico inglés Robert Hooke observó en 1664 una gran formación meteorológica que podría ser la Gran Mancha Roja (conocida en inglés por las siglas GRS). Sin embargo no parecen existir informes posteriores de la observación de tal fenómeno hasta el siglo XX. En todo caso, varía mucho tanto de color como de intensidad. Las imágenes obtenidas por el Observatorio Yerkes a finales del siglo XIX muestran una mancha roja alargada, ocupando el mismo rango de latitudes pero con el doble de extensión longitudinal. A veces, es de un color rojo fuerte, y realmente muy notable, y en otras ocasiones palidece hasta hacerse insignificante. Históricamente en un principio se pensó que la gran mancha roja era la cima de una montaña gigantesca o una meseta que salía por encima de las nubes. Esta idea fue sin embargo desechada en el siglo XIX al constatarse espectroscópicamente la composición de hidrógeno y helio de la atmósfera y determinarse que se trataba de un planeta fluido. El tamaño actual de la mancha roja es aproximadamente unas dos veces y media el de la Tierra. Meteorológicamente la Gran Mancha Roja es un enorme anticiclón muy estable en el tiempo. Los vientos en la periferia del vórtice tienen una intensidad cercana a los 400 km/h.
Recientemente (marzo 2006) se anunció que se había formado una segunda mancha roja, aproximadamente de la mitad del tamaño de la Gran Mancha Roja. La segunda mancha roja se formó a partir de la fusión de tres grandes óvalos blancos presentes en Júpiter desde los años 40, denominados BC, DE y FA, y fusionados en uno solo entre los años 1998 y 2000 dando lugar a un único óvalo blanco denominado Óvalo blanco BA, cuyo color evolucionó hacia los mismos tonos que la mancha roja a comienzos del 2006. La coloración rojiza de ambas manchas puede producirse cuando los gases de la atmósfera interior del planeta se elevan en la atmósfera y sufren la interacción de la radiación solar. Las mediciones en el infrarrojo sugieren que ambas manchas se elevan por encima de las nubes principales. El paso por tanto de Óvalo Blanco a mancha roja podría ser un síntoma de que la tormenta está ganando fuerza. El 8 de abril de 2006, la Cámara de Seguimiento Avanzada del Hubble tomó nuevas imágenes de la joven tormenta.
Estructura de nubes.
Las nubes superiores de Júpiter están formadas probablemente de cristales congelados de amoníaco. El color rojizo viene dado por algún tipo de agente colorante desconocido aunque se sugieren compuestos de azufre o fósforo. Por debajo de las nubes visibles Júpiter posee muy posiblemente nubes más densas de un compuesto químico llamado hidrosulfuro de amonio, NH4SH. A una presión en torno a 5-6 Pa existe posiblemente una capa aún más densa de nubes de agua. Una de las pruebas de la existencia de tales nubes la constituye la observación de descargas eléctricas compatibles con tormentas profundas a estos niveles de presión. Tales tormentas convectivas pueden en ocasiones extenderse desde los 5 Pa hasta los 300-500 hPa, unos 150 km en vertical.
Las teorías de formación del planeta son de dos tipos:
-formación a partir de un núcleo de hielos de una masa en torno a 10 veces la masa terrestre capaz de atraer y acumular el gas de la nebulosa protosolar.
-formación temprana por colapso gravitatorio directo como ocurriría en el caso de una estrella. Ambos modelos tienen implicancias muy distintas para los modelos generales de formación del Sistema Solar y de los sistemas de planetas extrasolares. En ambos casos los modelos tienen dificultades para explicar el tamaño y masa total del planeta, su distancia orbital de 5 UA, que parece indicar que Júpiter no se desplazó sustancialmente de la región de formación, y la composición química de su atmósfera, en particular de gases nobles, enriquecidos con respecto al Sol. El estudio de la estructura interna de Júpiter, y en particular, la presencia o ausencia de un núcleo interior permitiría distinguir ambas posibilidades. Las propiedades del interior del planeta pueden explorarse de manera remota a partir de las perturbaciones gravitatorias detectadas por una sonda espacial cercana. Actualmente existen propuestas de misiones espaciales para la próxima década que podrían responder a estos interrogantes.
Con más de 400 volcanes activos, es el objeto más activo geológicamente del Sistema Solar.Esta actividad tan elevada se debe al calentamiento por marea, que es la respuesta a la disipación de enormes cantidades de energía proveniente de la fricción provocada en el interior del satélite. Varios volcanes producen plumas de sulfuro y dióxido de sulfuro, que se elevan hasta los 500 km. Su superficie también posee más de 100 montañas que han sido levantadas por la extrema compresión en la base de la corteza de silicato del satélite. Algunas de estas montañas son más altas que el Monte Everest.
A diferencia de la mayoría de los satélites externos del Sistema Solar, que se encuentran cubiertos de gruesas capas de hielo, Ío está compuesto principalmente de roca de silicato rodeando un núcleo de hierro derretido.
Ío jugó un papel importante en el desarrollo de la astronomía durante los siglos XVII y XVIII, ayudando a la adopción del modelo de Copérnico del sistema solar y de las Leyes de Kepler del movimiento planetario. La primera medición de la velocidad de la luz, realizada por Ole Rømer, fue hecha midiendo el periodo de rotación de Ío.
Simon Marius sugirió el nombre de "Europa" tras su descubrimiento, pero este nombre, así como el nombre de las otras lunas galileanas, no fueron de uso común hasta mediados del siglo XX. En gran parte de la literatura astronómica temprana aparece mencionado por su designación numeral romana, "Jupiter II" o como el "segundo satélite de Jupiter".
Júpiter posee un tenue sistema de anillos que fue descubierto por la sonda Voyager 1 en marzo de 1979. El anillo principal tiene unos 6500 km de anchura, orbita el planeta a cerca de 1.000.000 km de distancia y tiene un espesor vertical inferior a la decena de kilómetros. Su espesor óptico es tan reducido que solamente ha podido ser observado por las sondas espaciales Voyager 1 y 2 y Galileo.
Los anillos tienen tres segmentos: el más interno denominado halo (con forma de toro en vez de anillo), el intermedio que se considera el principal por ser el más brillante y el exterior, más tenue pero de mayor tamaño.